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A Wiener—Hopf-Type Analysis of Uniaxial
Substrate—Superstrate Microstrip Structures

George A. KyriacouMember, IEEE,and John N. Sahalosenior Member, IEEE

Abstract—A Wiener—Hopf-type technique in conjunction with Both layers in the above-mentioned investigations are as-
the hybrid-mode analysis and a space-domain Fourier transform sumed to be isotropic. A lot of dielectric materials exhibit

pair was employed for the solution of the canonical problem of ; ; . . i :
a TEM wave obliquely incident upon the edge and defined by a a dielectric anisotropy, especially of the uniaxial type. This

semi-infinite plate conductor lying at the interface of two uniaxial S elthe_r an inherent property of t_he material as in unlaX|f’:1I
dielectrics, forming an otherwise grounded double-layer geome- Crystalline substrates (e.g., sapphire, quartz, and magnesium
try. The single-cover layer and double-layer surface-wave modes’ fluoride) or an artificially acquired property during the man-

characteristic equations are examined and their cutoff conditions, ufacturing process (e.g., ceramic impregnated Teflon, like
along with safe conditions avoiding longitudinal-section magnetic Epsilam-10). In addition, the inclusion of an also uniaxial
(LSM) modes are given. The scattered field components and the ’ : .
TEM-wave reflection coefficient are given analytically in the form S.upe.rstrate offers more .degrees of fre.edom in the prlntgd
of Sommerfeld-type integrals. A thin layers approximation and a Circuits and antenna design toward the improvement of their
numerical integration scheme were adopted for the evaluation of performance. For this purpose, an extensive investigation of
the reflection coefficient. Its expression can be directly used for the substrate/superstrate anisotropy effects should be carried

the analysis of wide microstrip lines and patch antennas printed ¢ |t j5 exactly toward this aim that the authors are currently
in a substrate/superstrate geometry. The whole analysis gives a

clear physical insight into the problem. Furthermore, a twofold Wor.king, with som.e pltelirr_linary results prese-nted.in [5], while
theoretical verification was adopted by either forcing the absence @n in-depth examination is to be presented in this paper.
of the superstrate or considering both layers to be isotropic. ~ The single-layer (substrate) uniaxial anisotropy has been the
Numerical parametric investigations show the.effect.s of githerthe subject of the authors’ previous works [6], [7]. A double-
presence of the superstrate or both layers’ dielectric anisotropy. layer structure, where an uniaxial superstrate is added is
analyzed in this paper. An analytic approach based on the
I. INTRODUCTION Wiener—Hopf technique in conjunction with a space-domain
. Fourier spectrum is employed. This results in closed-form
E(LE;SESC;IRLS Egpiifiggg (izO\tlr?(;) ;ﬁé?rsi': g;t?r:]icfrcc))i?n xpressions in terms of Sommerfeld-type integrals for the
y thaly : : cattered electromagnetic-field components, which gives a
antennas structures. The cover layer is either mtentlonay

. . . arer physical insight compared to numerical techniques.
used (acting as a radome) for protection from envwonmenﬁ_aF Pny 9 b g

. . Irst, the canonical problem of a TEM wave obliquely incident
hazards, or sometimes naturally formed (e.g., ice layer) due P quety

weather conditions. It was proven in [1]-[3] that a significa ut80n the infinitely extended edge, defined by a truncated

. . . e ) rBlane conductor lying at the interface of the two uniaxial
increase in patch antenna gain, radiation resistance, andd‘@ectric slabs is addressed. The whole scattering phenom-
e

efficiency can be obt_ained by properly choos_ing the sgperstr%i]on near the edge, namely radiated fields, surface waves
parameters. For this purpose to be achieved, fairly thI%xc:itation, and reflected fields, is taken into account and

layers of the order of a quarter wavelengt/4) have been a TEM-wave reflection coefficien{l'rry) is established.

considered. Moreover, it was proven that optimum efﬂmenqy r the case of electrically thin layers, an approximation of

T B e e e nvobed 11 i carid out. reuling i
' ! 8 algebraic closed-form expression fBigy. While for

c0n3|de_r|ng relatively ‘h'f‘ layers, an increase in _the superstr%{éctrica”y thick layers, a numerical integration scheme is
layer thickness results in an efficiency reduction. It is als

. . Smployed for the evaluation of the integrals involved in
pointed out that the presence of the superstrate increases Wg y 9
FM -

edge conductance and, thus, the. radiated power along W'Fﬁ:urthermore the establishelgy can be used for the
the surface-wave power are also increased. Thus, from Mlsﬁ:dy of wide microstrip lines as well as rectangular and some

can be concluded that unless the thickness of the two layer :
is taken for the resonance condition specified in [1]-[3], th%langular paich antennas. According to [9], [13], [15], the

superstrate should not be too thick scattering-reflection phenomenon can be reasonably assumed
P ' to be localized for the wide microstrip lines and the most
Manuscript received June 3, 1996; revised January 24, 1997. frequently encountered patch antenna§ in practlce. Namely,
G. A. Kyriacou is with the Department of Electrical and Computetheir open edges can be assumed electrically isolated. Thus, the
Engineering, Demokritos University of Thrace, GR-67100 Xanthi, Greece. tyo-dimensional (2-D) reflection coefficient established herein
J. N. Sahalos is with the Department of Physics, Aristotle University of b d within th trical optics techni 14
Thessaloniki, GR-54006 Thessaloniki, Greece. can be used within the geometrical opuics technique, e.g., [ ]’
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Fig. 1. An obliquely incident TEM wave at the edge of a semi-infinite plate conductor, in a uniaxial anisotropic substrate/superstrate configuration.

Il. FORMULATION truncated conductor, is to be tried first. A TEM-wave reflection

An infinitely extended grounded double-layer dielectri&oeﬁide”t will then be defined, followed by parametric inves-

structure is considered, where a semi-infinite plate conduchgations for the edge admittance and its applications in the
is located at their interface, as shown in Fig. 1. The relatiudy of microstrip structures. The incident wave, propagating

magnetic permeabilities of the two slabs are symbolized 4s"€gion one, can be expressed as
i (i = 1, 2), while their dielectric permittivities are assumed Ei = iko(~tatay)
uniaxially anisotropic with their optical axis vertically aligned,,q

along thez-axis, described by tensors of the form .

H, = ad 4 £)e IR0 (—Ertay) 2
~ i 0 0 t I/L'rlco ( Sy) ( )
Eri = 8 56” 0 wherea = ny/y sin ¢ and§ = nyyy cos ¢ = | /n7,) —a?
ez are the propagation constants in gheandz-direction, respec-
€i 0 0 for i tively, and{p = 1207 €2 is the free-space intrinsic impedance.
- 8 Eéi 0 ore=1,2. (1a) The scattered field components are determined by the help
/i

_ o . ~_ of a space-domain Fourier transform in conjunction with the
The optical axis is a term widely used for the uniaxial hypyrig-modeanalysis technique. Time harmonic fields of the
media. Further details can be found in [16]. The correspondifgy ci«t and a\-space spectrum Fourier transform pair in

refractive indices are then the z-direction are considered as
P . ) ~ 0 oo .

N1i =ELillrs f()\) — @ {/ +/ }f(x)ejko)\a} dx
and 21 {J-e  Jo

N fi =€/ filbri- (lb) :f—()‘)+f+()‘)
A Wiener—Hopf solution of the canonical problem of a vertiand -
cally polarized TEM propagating in layer one and obliquely flz) = / FN)emTkoAz gy ©)
incident (at an anglep) upon the opening defined by the —00
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f+()\) and f_()\), defined as positive and negative functions, The total tangential electric field must be continuous at the
are analytic in the upper- and lower-compleplanes, respec- interfacesz = 0, d;, and d;s. Since the incident tangential

tively. Since there is not any discontinuity in thedirection,
the scattered field will also be propagating along thaxis
as ¢~k like the incident field. (The dependencie&-

electric field is zero then the continuity must be satisfied by
the scattered one. Using (4), the latter requirement imposes the
continuity of the quantitieg.,.; H7; and(e,/; /e 1:)(OE2;/9z).

and ¢—7%02¥ apply for all the field quantities, but they areThese conditions yield the following.
omitted for convenience throughout this paper.) In this manner,1) On the infinite ground plane (zero tangential electric

Maxwell's equations can be simplified with the resulting

substitutions:d/9t — jw, 8/8y — —jkoo, and 8/9z —
—jkoA.

Furthermore, according to the hybrid-mode analysis, the

scattered field can be given by a superposition of longitudinal-

section electric (LSE) modes or transverse to thexis
TE. with E.
longitudinal-section magnetic (LSM) or TMwith H, = 0 as

B, = ﬁ {Coliri(oéf? + M) HS;
- (L)oo 32|
and
H= { (o X,
- ap) 2 } @

The subscript: denotes the three regions £ 0 for the air
and¢ = 1, 2 within the two dielectric slabs). The field-

components defined ad®, = H™" and E3, = E»MF
satisfy the following wave equations:
aQ‘E[gz i [7s
02 KPS, =
and
I?E2, 5 =
i E3. 5
St - KR ES, ©)
where
wD = /a2 + A2 —n3;
and
(i) _NLi [ o 2 _
Upo = n//z + A n//z

The solutions of wave equations (5) for the air region are

Es —kowoz

Z!

[7s
HZO

0 :EOG

Hop—kouoz }7 forz>diza=di +d» (6)
=Hye

whereug = vaZ + A2 -1 and the real part of alk-functions
must be positive Réuo}, Re{u}}, Re{u)} > 0.

= 0 and the corresponding magnetic modes

field) at » = O:
B =0
HY =o0. (8)
2) On the interface: = d; (incident field E¢ = 0):
& (I)E(l) sinh [kou%)dl]
€11
= Z/f W {E® cosh [kou'Z d]
+ ED sinh [kou'd di]}
(9a)
u,lH(l) sinh [kou dl]
= ptro{H sinh [kou dl]
+ H® cosh [kou'Pdy]}. (9b)

3) On the interface: = d; + do = d1o:

Sz (2){E(2) cosh [/fou@)dm] + E® sinh [kou d12]}
€12
—kouodi2

= —upFEpe (103)

pr2{ H® sinh [kouZ dyo] + HY) cosh [kou'Zdy,]}

= Hpe kovod2, (10b)

Also, the tangential magnetic field must be continuous on
the air—dielectric interface. Thus, (4) imposes the continuity
of e,/ £, and9H3;/9z, which atz = d;2 gives

e/2{EQ) sinh [kouly dio] + EZ) cosh [kouly dis]}
(11a)
“512){H(2) cosh [/fou d12] + H(Q) sinh [kou d12]}
Fouochz, (11b)

= Epe —kouodi2

= —U,()Hoe

A Wiener—Hopf equation for the scatteredcomponent
electric field can be found by applying the boundary conditions
for the total electric flux density vectdd., = eoeF., at the
interfacez = d;. The normal scattered fluk? is continuous
at the interface between dielectriesl and -2 (for z < 0)
and discontinuous on the truncated conductor {far 0) by
the amount of the induced surface charge dengsity). The
authors follow the procedure given in [1] and recall that the
quantity —eoe, /1 B (z, = = di’) for z < 0 can be treated

The corresponding solutions in the two dielectric slab rés a fictitious surface- charge densifyx). This is the charge

gionsi = 1, 2 are

E®, =EY sinh [/fou(Z 7] + E% cosh [kou 7]
H?, = HY sinh [kou 7] + H cosh [kou 7] (7

Region one i < z < d; and region two isl; < z < dy».

density that would be induced at the interfage=(d;, < 0)

if the plate conductor was not truncated. This results from an
equivalent situation where the incident field is assumed to be
confined within the first layer; namely the incident field, is
assumed to be zero above the dielectric—air interfaeed;.
Under this approach, and in order for the boundary condition
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of the normal fluxD? to be valid, a fictitious charge densitywhere

pém) must be included atz(= di, z < 0) as

Di(z<0,z=df)=Di(x <0, z=d]) =p'(x <0)
or

0—coe/ Bz <0, z=dy) =p'(z <0).

Taking into account the boundary conditions for the scatter
componentD: at (z = di, x > 0) and for bothD? and the
incident componenD?, at (z = dy, < 0) one finally gets
1B\ z=df) =, n E;D(\, 2 = dY)
5t (A 0% (A
SR AC))
£0 £0

(12)

where g7 (X) and g5 (\) are the Fourier transforms of ()
andp’(z), and are analytic in the lower and upper complex-
half planes.

The Fourier integral of the known incident electric field
(r < 0, z = d7) can be evaluated analytically yielding th
p-()\) in the form

L €0/ 1 e~ dkooy

27r )\ + /n?/l _ 062

The total charge induced on the truncated conductor can
be expressed by the divergence of the total tangential fl
density Dz,.
F_()\) analytic in the lower complex- half plane as

(13)

1 [° = =
F_(\)= o / Vi E5i(x, 2 = dp)ed o dy

= j[=AES 4 B} Joza,- (14)

The unknownsESY, ES, and EL? can be expressed as a
function of F_()) through (9a), (10a), (11a), and (14). The

resulting expressions are as follows:

&

For this purpose, the authors define a functioly

U,ELQQ) + €12 tanh [/{Jouggdlg]

) = .
) £ 1 2Ug +u222) tanh [koug?)dlg]

Substituting these into (12), and after some algebraic manipu-
lations, one gets the following Wiener—Hopf equation:

F_() = Q.(\) LA =~ (V)

€0

as shown in (16a) and (16b) at the bottom of the page.
The characteristic equations of the excited LSE modes are
introduced in (15) and (16) as will be explained in the
following section.

In the same manner as above, a Wiener—Hopf equation
for the magnetic field can be found by imposing the bound-
ary conditions for the total magnetic field on the truncated
conductor and at the interface of the two dielectrics. The
tangential magnetic field must be continuous at the interface
z = d; between the two dielectrics (far < 0), while it
must be discontinuous by the amount of the total induced
surface current density; on the truncated conductor (for
z > 0). This boundary condition in its usual form can be
written as H, — H; = —2% x J,. In order to reduce this
vector form into a scalar one, one can take its divergence

ed (15)

Ve - (H2 — Hi) = =V, - (2 x J,), where the operator

&is reduced tovt since only the tangential components are
volved. For convenience, |df’. = V e H,. In this manner
this boundary condition gives the following relation in the
Fourier domain:

150\ 2 =df) = AL (N 2 =d)) =2 (0) - (17)
whereH?; andj, are the Fourier transforms of the quantities
H?; and =V, - [z x J4(x)], which is

H:(z, 2) =V, H

and

EW HZ = jko(AHZ; — Hy,). (18)
" . i ) It can easily be proved from (2) that for the incident magnetic
— =4 . - . field V, - H} = 0. This means that the surface current density
€171 ugy sinh [kouly di] involved in (17) is exclusively coming from the scattered
E® magnetic field, thus/;(z) = J3(z) or j+(A) = j3(A).
1o () (I{]) ord(eQr) to estat()IQi)sh anpther relation between the~unknowns
=-— 5 ©) : ©) ns» Has , and Hy, beside that of (17), a functio&_(\)
€//2 5 {cosh [koupny di] — f(A) sinh [kou,, di]} analytic in the lowerA half plane is defined from the rotation
E® of the tangential electric field on the truncated conductor as
I 0
— 2 F_()\)l G_(\) :2i / 2.V x Ei(z, z=dy)e?*N dg
€12 uﬁfg{smh [oulZdi] — cosh [kouﬁfgdl]} Mmoo
N =jlaEi_ + \E5_].=q,. (19)
where
wBu? tanh [kou(l)dl]
Qe()\) _ n2"n2 i n2 (16&)
q LSE
an
Dysp = mlug n {ug + &1 2ug tanh [kougdg]}q_gu%) tanh [kouSQ)dl] (16b)

€12U0

+ “5122) tanh [koug?) do]
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Fig. 2. Single- (upper) and double-layer surface waves propagating im the0 andx < 0 directions, respectively.

The unknowns? Y, H{?, andH ? can be expressed in termsconductor) in the area < 0. Both of these surface waves

of G_(\) through (9b), (10b), and (11b) as are excited by the TEM incident wave at the edge 0. The
~ first group propagates in the cover layer toward- 0, while
HT(LIS) =j G-(N) the second group propagates in both layers towaxd0.
Cofbr1 sinh [kou dl] The characteristic equations for the modes of the upper
) G_()\) grounded layer can be found by considering the truncated
( ) =J conductor ak = d; to be extended infinitely<{co < x < o).
Corra{sinh [kouf 1] — g(A) cosh [kow, du]} For such a situation the tangential electric field must vanish
H® —j G_(A) on the infinite conductor. This yields
Cotr {COSh k u d —— sinh [k u d } .
Ofir2 [ 0 1] g()\) [ 0 1] EfQ —o
where or =h
( ) + pr2uo tanh [/{Jou dlg] aEzSQ -0
g(A) = © ) Oz B
Mr2to +2;5{ tanh [/fou d12] " =y
Substituting the above relations in (17) and using the expr@g1d .
sions (7), after a relatively long algebraic manipulation, one 22 i, =0

gets the following Wiener—Hopf equation:

el 20) ©OF explicitly
G-(N) = 2= QN+ ) (20)
where ET(L%)qu) cosh [kou%) di]+ E,(LQC)UELQQ) sinh [kou%) di]=0
HrlHr2 . :
Qm(A) = Diont (21a) H? sinh [kougl) di] + H? cosh [kougl)dl] =0
and (22)
Drsy = pir 2“511) coth [/fou(l)dl]
(2) Equation (22), along with the boundary conditions at the
r1U,1 A, + ~oug coth [k u d : ) .
+ L s ko 2]} . (21b) interfacez = d; given by (10) and (11), leads to the following

(2) (2)
pr2to + . coth [Kou, [ do] two characteristic equations:

As is expected, the excited LSM modes characteristic equa-

tions are introduced in (20) and (21). Grounded upper layer LSE modes:
“5122) tanh [l{iou@)dg] = —£ 9l

Ill. LSE, LSM SURFACE MODES
CHARACTERISTIC EQUATIONS or

Two groups of surface waves are supported by the structufet2  /,, tan <k0d2
of Fig. 1, which are clearly shown in Fig. 2. The first group ig?//2 "j2 T O

supported by the “grounded” (over the truncated conductor) 5
superstrate layer in the area > 0. The second group is  — €12/ %e — 1
supported by the grounded double layer (over the infini@rounded upper layer LSM modes:

"% )

(23)
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“5121) coth [kougl)dg] = —lbp2Uo
/s — a2, cot (k0d2 n3,— ozl%m) (24)

= —Hr24/ Oé%m -1

wherea,. anda,,, (— a?+\?) are the propagation constants

of LSE and LSM modes, respectively, apnd-1, 2, - -- is the
order of the mode.

The characteristic equations for the grounded double Iafe

can be obtained by considering the absence of the trunc

conductor atz = d;. In such a case there is not any surfac

current flowing along the interface = d; and the tangential
magnetic field must be continuous across it. This gives

621

with Dy sk, given by (16b).
Grounded double layer, LSM modes:

Dism=0

with Dy given by (Zlb)
Inspecting the two Wiener—Hopf equations [(15) and (20)],
one can see that the double-layer surface waves characteristic
quations are introduced inside them as denominators: LSE
des in the electric field and LSM modes in the magnetic
eld. The cover-layer surface-waves characteristic (23) and
4), are in turn, introduced insidB; sg and Dysy, respec-
ively.

(27)

t

Hgl — ﬁfQ IV. SOLUTION OF THE WIENER—HOPF EQUATIONS
z=d, z=dt . . .
or 4 4 The two kernelg). and @,, involved in the Wiener—Hopf
B _ I equations are first factored into a product of a positive and
e/ e T €//252 mar negative functionf). = Qe - Qc— andQy,, = Qg - G,
and according to [8]. Similarly following [7] and [13], one finally
315151 aI:IZSQ obtains the following solutions:
- ~ . kody
Oz s 0z ma F_(\)=—j — /”?/1 — a2
or explicitly ' A+ jor tanh A
5//1E,(L{:) cosh [kougll?)dl] 1/”?/1 — a? — jo tanh A
=, 2{EQ sinh [kou'Zdy]+E2 cosh [kou'Zdy]} IS AN IV (28)
u D HD cosh [koul d ] and
2 2 5 G\ = —i kody 5 5
=u@{H® cosh[kou'Ddi]+HD sinh [kouPd;]} ~W==j == /ni—a
(25) ae? [fe (_ V "3/1_“2)"')0”(_)‘)] /2 -
The rest of the boundary conditions (except for the truncated ' /”?/1 — a2 cosh A — ja sinh A (29)
conductor) are valid exactly as in the previous section. So, the
combination of expressions (8)—(11) with (25) results in thghere (see (30) at the bottom of the page), and
following characteristic equations: Aa) o /oo " EMU%) tanh [kougllg)dl]DLSM
Grounded double layer, LSE modes: T Jo fr2y Drsk
B (31)
DLSE =0 (26) )\2 + 042
Py iz ~
. € nii n 2\ [ dw
fe()\) =jbn koJ_dll nla nJ_/l/Q + P / ETL{Qe(w)} w2 — \2
() v oo [
/2 i
. Hpr2 2 > dw
e [ e
( ) J Ifodl(ﬂrl +N12)( a2 =1 _j)\) T o {q ( )} w2 — )2
(30)
EJJ(”J.Q) +5L2<M1>
o =) T ) o it
3 71//1 n)o U/SQ)DLSE
N1l Ny/2
gm(A) = (b1 + pr2)tio

Dism
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Since all the A-functions (unknown at the beginning) in-in the lowers\ half plane. The TEM-wave scattered field is
volved in the expressions of the electromagnetic field aobtained from the residue contribution of the corresponding
already given in terms of eithef’_(\) or G_(A), then pole at) = ”?/1 — a2 [for which U’SQ) = 0]. The resulting

(28)—(31) can be used to obtain the desired field componelsiaction coefficient is then expressed as
The difficulty to be faced now is that the obtained expressions

are in the Fourier domain and an inverse Fourier transform r B (z, y)|reEm
is required in order to get the field components in the real (ren) (@) = Ei|rem
domain. This task presents major difficulties in the general i ()\ _ \/m)
case, since the functions_(A) and G_(A), and in turn —im VN
the field spectral components, are already in the form of J kodl\/m
Sommerfeld-type integrals, as shown above. , /1
Fortunately, there is a number of cases with practical =X (32)

interest, like the reflection or the transmission coefficient
of the TEM wave where the inverse Fourier integral cafyhere
be approximated by its residue (or Cauchy principal value)

contribution. X(a) =2 tan~t | 222 talh & 1 _ £ (_ 02 — a2)_
At this point, as well as at the end of some major steps 2 /1

ns, —a?
within the present analysis, a twofold theoretical verification /1
is adopted. First, by considering the absence of the superstrate
(zero thickness and unit dielectric constant) all expressim?ﬁe functions A(«) and f.()\) are given as semi-infinite
are exactly reduced to those of the authors’ previous work [%egrals with respect to\ or w. For the purpose of this

[7], and are carried out by considering a uniaxial substrate, ag,e\ " either numerical integration or analytical approximation
well as one without a superstrate. Second, by letting the WOl be employed depending on the two layers thickness. An

dielectric layers become isotropic (namely,, = €11 = €1 gyamination of (30) shows that the main contribution to the
ande s = €,/2 = &,2), and considering normal incidence

i _ 2 _ 2
(e = 0) as in [4], the corresponding expressions appearir(@_()‘) integral comes from the pole _> )‘__ V ”/_/1 o
therein are exactly verified. It'is then more convenient for numerical integration purposes

to extract thisf.(w — X) contribution analytically. But, as
in the usual case (small dielectric losses), this pole lies near
V. REFLECTION COEFFICIENT the Re(w) axis and the integration is from O tso, thus this
All surface waves mentioned earlier are excited near tigentribution is actually a Cauchy principal value. The resulting
edgez = 0, in the vicinity of the point where the-polarized principal-value integral is
TEM wave is incident. In general, these two infinite series of
LSE and LSM modes must be taken into account by means of ~ fe (A = —\/n?/l - a2)

(33)

their residue contributions at the poles (propagation constants) 5 5
A = £apnm,, £y given by the solution of (23), (24), (26), and I Y/ 7 S 2 5 5
(27). Higher order modes have large attenuation constants and = tan -1 | Vhun—«
vanish quickly from the edge. At an adequate distance away .
from the edge, only the dominant reflectegholarized TEM PV / tnfg.(\) dX (34)
wave will exist and its contribution is given by the residue 0 A% — (”?/1 —a?)
— 2 ic i i i i
atA = T o®. This is the case for wide mlCrOStrIpWhere for convenience the integration variable is changed from

lines and antennas. It is quite convenient for these applicationst
for the reflected TEM by the aid of the oy
to account for the reflecte wave by the aid of the . hermore, a theoretical verification is again adopted:

corresponding reflection coefficient. This is defined as the raﬁgmely, the absence of the superstrate again leads to the exact
of the reflected-to-incident TEM wave-component of the expressions obtained in [6], [7].

electric field. The scatteregkcomponent of the electric field
within the substrate?; (z) can be obtained by applying the

inverse Fourier transform t&* () given by (7a) where the VI. THIN DIELECTRIC LAYERS APPROXIMATION
function E,(L?()\) is taken by its expression with_()). It is Special computer programs are needed in order to calculate
then the reflection coefficient from the above Sommerfeld-type
00 integrals. Simple, fast, and accurate (for practical applications)
E2 () :/ E2 (N)e koA g expressions are required to be included in microwave inte-
- grated circuit (MIC) computer-aided design (CAD) packages.
e11 [ cosh[kouly 2] F_(A)e—ikoAw Such an approximation is very usual in practice, and can be
- _% /Oo U’SQ) sinh [kou%)dl] dz. obtained considering both dielectric slabs to be electrically thin

kod; < 1 andkgdo <« 1. The authors expand all the above
Since the interest here is in the reflected wave, whidhtegrands in powers dfyd; and integrating term by term up
exists in thez > 0 area, the contour of integration is closedo (kod;)? [terms (kod;)? not included]. Following a similar
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procedure with that of [9], closed-form expressions for the twanrresponding transcendental characteristic (23), (24), (26),

functions A(«) and f.(«) are obtained as
Ae)

~ Fodia {(m SN ﬂ) [en(kody) + v — 1]}
T €//1 Ny Hr2

n <i _ uﬂ)&z(M)

&/n

+Eﬁ- ﬂugn(ﬂn) 1 nl1
Efr nYj2 ns/i1 ns/i1

2Qo(=0:) = 2Q0(6,) + <1 - %)Kn%r
fe(—q/n?/l — 042)

—2kody €//2 Mi2
(e e
/L Typ2

. |:£7’L </€0d1 E) +v - 1:|
n/n
+ N Kn(\/ a? — 1) p oL 2Q0(-6.) — £n27r]}
/)

g/n
(36)

(35)

where
N2 nii
El] —— — €12 ——
PV /1
S n n

PRy
72 /1

§ = MHr1 — M2

=

Hr1 + M2

~ =0.57721566 ... the Euler’'s constant
and

Qol) = j:f ()
1)2{zn2_ > zmﬁn{%} }

< 2
7 —
m=1

(27). A good starting value is needed in this scheme to accel-
erate convergence but also, and more important, to distinguish
the desired solution from the multiple possible solutions. It
should be noted at this point that not all of these modes are to
be excited, but only those allowed by the two-layer thickness.
Thus, the first task is to define the modes which are turned on.

For the single grounded layer, namely the surface modes
propagating in the cover layer (far > 0), the turn-on
conditions or cutoff frequencies, as well as the approximate
wavenumbers, are given in the authors’ previous work [7]. Itis
worth recalling that the first LSE mode is always excited, while
the second mode is the first LSM which is turned on when
k‘on\/TLiQ —1 > 7 /2. Also, the approximate wavenumbers
refer to the electrically thin cover layer and its characteristics
can be deduced from the corresponding expressions given in
[7].

In order to get some practical limits, the cutoff conditions
of the grounded double-layer surface waves will be defined.
All the field components including the surface waves are
proportional toe—*“2* in the air region, as shown in (6),
where ug = ag—l. Recalling the radiation condition,

Re(u0) > 0, the valid wavenumbers should hawg > 1.
Thus, the surface waves cutoff conditiomig = 0 or o, = 1
while the turn-on, or excitation, condition i, > 1. Letting

ug = 0 in (26) and (27), the double-layer cutoff conditions
for the LSE and LSM modes are obtained in a form similar
to that of [10] as shown in the following.

Double layer LSE cutoff condition:
1 nyo

— == . /n? —1tan{kdw n2 —1}
€12 Ny //2 0 271//2 //2
IR A S U A e 11 2 _
= c] n//l 71//1 1 tan {kOdl n//l 71//1 1;.

An important thing to be noted is that the cover layer'"?

thickness(kqds) is absent from the above expressions. This _ _ 1
is because it appears in the expansions only in and above the

second-order termskodz)? or (kod1)(kodz), which are, in

turn, omitted. This fact means that the reflection coefficie
is relatively insensitive from the thickness while it is strongl
dependent on the dielectric characteristics of the cover lay
provided of course that the cover layer is electrically thi
In order to account for the cover layer thickness effects,

numerical evaluation of the integrals involved Ihrgy is
necessary.

VII. SURFACE WAVES APPROXIMATE
WAVENUMBERS AND TURN-ON CONDITIONS

(37)
Double layer LSM cutoff condition:
i \/713_2 —1 tan {kodm/nﬁj - 1}
m\/nﬁ_l—lcot {kodu/nﬁ_l— } (38)

It is interesting to note that the left-hand side (LHS) of (37)
%d (38) involves only the superstrate parameters, while the

¥i9ht—hand side (RHS) involves only the substrate parameters.

Edrcing the absence of the superstrate, e.g.ddet 0, then

rt37) and (38) reduce to the corresponding cutoff conditions

dt a single-substrate layer. Similarly, inverting first (38) and
forcing the absence of the first layer, e.g.,det= 0, then the
single layer-superstrate cutoff conditions are obtained from
(37) and (38).

An important observation is that the first solution of (37)
is kg = 0, thus the first double-layer LSE mode has zero

The LSE and LSM mode wavenumbers appear as pdaetoff frequency (. = 0) which means that the LSEis
singularities in the field ol'rgy integrals. Their exact lo- always excited. But, this is not the case for the LSM modes
cation is necessary in order to evaluate these integrals simdgch will be turned on only if the two-layer electrical
these poles lie on or near the integration path. An iteratitRickness is adequately high. For a given geometry a graphical
Newton—Raphson scheme is employed for the solution of thepresentation of (37) and (38) gives the best insight. For this
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purpose, and for each one in (37) and (38) separately, tiwe corresponding transverse resonance equations. In order to
authors can plot one curve versus frequency (vefsus= accurately estimate microstrip lines or antenna characteristics
27 f /¢) for the LHS and another one for the RHS. The cutothe guantities obtained by the thin layers approximation must
frequencies for each one of the surface-waves modes is defibedmproved employing a numerical integration scheme for the
at the points where the two curves intercept each other. reflection coefficient. The same requirement applies also for
In most practical applications it is desirable to avoid surfacéhe investigation of the substrate/superstrate thickness effects.
waves radiation as far as possible. It is thus recommended ta’he semi-infinite integrals involved in the evaluation of the
select the two-layer thickness to avoid the excitation of the firgdflection coefficientA(a) and f.( ”?/1 —a2) in (31) and

L_SM mode and to re';alrj only the unavoidable LSEor the (34) possess a number of singularities and branch cuts. In order
single-cover layer, this |52qU|te easy because t_he authors #&5void the branch cuts the integration path is taken along the
selecteds, so thatkody \/n1, — 1 < «/2. From this, one can g, (A\) axis (from 0 tooc). The excited LSE surface waves
see that LSM is more likely to be turned on a& orn » are ) B B 5 5 .
increased. Based on this observation one can conclude a S4RSENS Poles in thé. at A = A, = £, /g, — o, while
condition for the double-layer geometry by accounting for Both LSE and any excited LSM modes present poles in the
worst case equivalent single layer with thicknéss= d1+d>  A(«) integral, the latter ab = +A,, = +,/a2,, —a?. It

and index of refractiom., = max (n,1, n12) leading to is the usual practice to select the dielectric layers thickness

Double layer safe condition (non existence of LSM-modes)>° that no LSM modes are excneg. Thfe pole atA =
- n§/1 — o2 has already been taken into account as a Cauchy
ko(dy + dg)\/max (n3,,n,)—1<=. (39)

2 principal value. Also, the integral(«)) possesses a pair of
The condition (39) is similar to that given in [11, p. 160] foSiMPle poles al = +ja. o
the isotropic double-layer case. Furthermore, th¢. integral possess a number of logarithmic

As soon as one defines the surface waves which are turn""é?ngma”t('?e)s (branch points) fary = 0 or atA = v 1- "‘2

on, their exact wavenumber values are needed for the mnd foru,; =0oratA = ,/n? , — o The latter singularity
merical integration, as explained earlier. Practical situatioappears also in\(«) integral.
_requ_ires only the two first mode_s L$E\r_1d LSM.. Approx- _Additionally, there are some removable singularities which
imating both layers to be electrically thin, the correspondingust be carefully accounted for in order to avoid numerical

double-layer wavenumbers (denoted with a supersd)ire problems. In both integrals the tertanh [kodyuly]/u'Y is

(2 kd 2 replaced bykod; in the limit whenug — 0. Also, in A(«)
~1+ —{Z e (n?/i - 1)} (40) two terms of the forrmgff coth [kodiugff] for ¢ =1, 2 appear
kods <1 2 e within Drsyr, which are replaced by/kod; in the limit when
2 ugff — 0.
Depending on the value of the propagation constant
1 ny,1 sin ¢ (or the angle of incidence) some of these singu-
N larities may be located on the integration pa&h () axis,
Zﬂm‘kodi or they may be moved away on thie (\) axis where they
i=1 do not affect the numerical integration. As explained in the
N 1 (41) authors’ previous work [7] one can distinguish three cases
2 ’ and for each of them the integration path is properly modified.
Zﬂrikodi The definition of each case is as follows:
=1

1) a]()i)l(a;?l(a(n/ /1 is the total reflection case;

Equation (40) exactly reduces to that of [11, p. 161] for 2) | « o < aé?l when there is only surface waves
the isotropic case, while assuming just the absence of the excitation:

cover layer ¢, = 0) (40) and (41) reduce to those of the 3) o < o < 1 when there are both surface waves and sky
authors’ previous work [7]. Also, for the single-cover layer  \ave radiation (the edge radiates, thus it works as an
the corresponding approximate values61 and aéj)l result antenna).

from (40) and (41) by replacing the summation with the term o, the integrals’ numerical evaluation the integration path

of 7 = 2. Finally, these values are improved employing ap g hgivided into proper unequal small sections, when the
iterative Newton—Raphson scheme to solve the Charaae”%ﬁ'ﬁgularities are first located on the ()\) axis. The inte-
equations. gration is performed up to a point close to the singularity
and then resumes just after it. The relatively slowly varying
VIII. N UMERICAL INTEGRATION-SINGULARITIES logarithmic singularities()\o) are approached up tol +
The thin dielectric layers approximation for the reflectiol0—>)\, while the faster varying pole singulariti€s\,) up
coefficient is very fast, but its accuracy is poor and it does ntwt (1 + 107*)\,. Also, the subintervals are selected to
account for the superstrate thickness, even though it remaiecome gradually smaller as a singularity is approached.
very useful, especially for the study of microstrip antennBurthermore, more subintervals are taken up to the point
problems where it can be iteratively used in the solution of = max(n_,, n//i), i = 1, 2. When these intervals are

d
s

NG

pml ~ 1+

kod; <1
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Fig. 3. Graphical solution of the double-layer cutoff conditions for a PTFE substrate and Epsilam-10 superstrate. (a) LSE-modes, (37). (b) L.$88modes

established and are put in an increasing order an adaptognditions are

Romberg integration with an error tolerance £@s performed X(a) - k g\/ﬁ _
in each of them. For the remaining semi-infinite interval, a o 0fy/ My — @7 = 7PT
progressive Romberg integration, on subintervals with length 5 ’
. . . o X( n —a2)—k0ha:—q7r
min (1/kod;) is performed until the last contribution becomes Vi
less than 10°. with p,g=0,1,2 --- (42)

where/ and h are the dimensions of the patch, respectively.
The resonant frequency can be calculated from (42) follow-
ing the procedure described in [6]. The resonant length of the
IX. A RECTANGULAR MICROSTRIP antenna can be found by solving the first of (42) to establish
ANTENNA WITH A COVER LAYER a transverse resonance for a fixed widtand fixed frequency
In the authors’ previous work [14] closed-form expressionk: 1he resulting propagation constary is used in the second
for the field under the radiating patch, the resonant frequen@l (42) and the resonant length considering the excitation
or the resonant length, and the input impedance of a probe fig® TMgp mode is
rectangular pe}tch antenna has been given. Th(_ase exp_ressions B X( ”?/1 _ a2) + g
can be modified for the present case, essentially using the fres _ . (43)
above-given reflection coefficient. The two transverse resonant A 2may,
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Similarly, the microstrip antenna input impedance can be

obtained by substituting the above developed reflection co- .1

efficient into the expressions given in [6], [14]. - ;‘;(j:fﬁ

3 i S EA
X. NUMERICAL RESULTS AND DISCUSSIONS jcf’ ///j{;’ P
The first concern is the examination of the surface waves £ e.o1 /,///’

turn-on conditions and their wavenumbers. A MATLAB pro- g ] 2 'r‘

gram was written for the graphical presentation of the double- g 17 N

layer cutoff conditions (37), (38) versus frequency. An ex- wm 7 seeee ;‘;/;‘;j =S

ample is shown in Fig. 3, for which the same data used in ; 0. 201 4; | Barg=1/2.25

[10] are adopted for comparison purposes, where a Teflon £ 7

(PTFE) substrate witlr |, = 2.88, ¢/, = 2.43, di = 8.02 ha

mm, and Epsilam-10 superstrate with, = 13, €,/ = 10.3, 7

ds = 1.95 mm are assumed. The two curves shown in Fig. 3(a) { poobodtint 4 s b PR

correspond to the LHS and RHS of (37) and their intercept ~ @.800] T rt o rrrrrrr e e

points define the LSE cutoff frequencies approximated as Normalized superstrate thickness, d,/A

fo1 =0, foo = 9.22 GHz, andf.; = 16.9 GHz. Similarly,

Fig. 3(b) corresponds to (38) and the LSM cutoff frequencies

are f.;, = 3.07 GHz, f.» = 13.14 GHz. These results are

almost identical to those in [10] where the corresponding 1
equations were solved numerically. The authors’ graphical

@

. . . . . . Pz
presentation offers a simple and clear insight into the entire /j;’ < :/,
situation. :

Having estimated the cutoff frequencies it is then clear
which surface modes are excited. The authors will deal with

- const. (0pe-1)

the usual case when only the first LSE modes are excited. g" 4’//';: AT T=10.2

The dependence of the substrate and superstrate thickness ///';; TR0 2 e 0.2

on the Wavenumber?nx(?]L and oc](;é)l for both the single g e =4

(cover) and double grounded layer are of special interest. 3 X

A Newton-Raphson iterative scheme is employed for the & e /"'

solution of (23) and (26). The authors start from the ap- ' puocot i LIRS S,

proximate values of the wavenumbers given in (40). It must  ©-291 t

be kept in mind that their exact value is required in the 1’ —

numerical integration, thus an error tolerance of the order .08 .02 .04 .06 ©.e8

of 107¢ is demanded. A parametric investigation for both Normalized superstrate thickness, d/d

a;i)l and a;‘j)l versus the superstrate thicknggs/A) with (b)

the horizontal dielectric consta .») of the cover layer as Fig. 4. Propagation constant of the first single and double-layer LSE mode.
a parameter, is shown in Fig. 4. It can be concluded that Agwaly, [([Efe)l — 1] and [af,':)l — 1] versus the normalized superstrate

alwayS%()‘i)l)a;?l while both of them are increased when, thickness ¢s/A) with = , as a varied parameter. (a) Substrate is Epsilam-10
is increased. and superstrate is PTFE and (b) vice versa.

Epsilam-10 is considered for the substrate and PTFE for
the superstrate in Fig. 4(a), while these are assumed Vigge to power losses. Thus, such a structure will act as a
versa in Fig. 4(b). Higher values are obtained in Fig. 4(bjuestionable antenna.
because the superstrate has high dielectric constant (Epsilamfhe incident TEM-wave reflection coefficient’)( for a
10) and its thickness is increased while it is considered thiiactical case of electrically thin substrate (Epsilam-10) and
in Fig. 4(a). It is first observed that the anisotropy effeciin superstrate (PTFE), versus the angle of incidepd@r
become significant only for electrically thick substrates ighe propagation constant= n /1 sing) with the superstrate
terms ofd, /g, /Ao rather thand/Xo. Recall that the condition gnjsotropy ration 1»/n, o = 2, 1.5, 1, 1/1.5) as a parameter,
for surface-wave excitation only, without sky wave radiationg shown in Fig. 5. The agreement between the thin layers
sl <a=mn/sing < 0415,2 Also, note thata;‘?l [and  approximation and the numerical integration is quite good
a;i)l] may become quite higher than unity [eve e)l — 2]for for the phase ofl’ given by Re {z(«)} with an error less
thick layers, as in the case of Fig. 4(b) for example. It is thghan about 8%, but the agreement is rather poor for the
concluded that thick layers (either sub- or superstrate) withagnitude ofl' given by exp[—Im {x(«)}] with an error
high dielectric constant may lead to excessive surface-wawe to about 25%. Also, the thin layers approximation does
coupling and even without sky-wave radiation. This situatiomot account for the superstrate anisotropy in the{z(«)}.
must be avoided, especially in microstrip antennas, where didpreover, the behavior of («) in this case, namely when
wave is the useful radiation while surface waves only giwbe substrate dielectric constants are higher than those of
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Fig. 5. Influence of the superstrate dielectric anisotropy on the reflecti6id- 6. Effects of the superstrate dielectric anisotropy on the reflection
coefficient and comparison of the thin layers approximation with the numericg@efficient when the superstrate (Epsilam-10) has higher dielectric constant
integration. (a) Phase of the reflection coefficient (I') = Re {x(a)}. (b)  than the substrate (PTFE). (Bf {z(a)} and (b)Im {w()}.

Magnitude of the reflection coefficiefif| = exp [—Im {a:(«)}].

superstrate physical thickness is used in the two cases (Figs. 5
the superstrate, is quite similar to that without a superstraiad 6) but the actual electrical thickness is proportional to
examined in the authors’ previous work [7]. A similar inthe effective index of refraction. So, one can say that in
vestigation is shown in Fig. 6 where PTFE substrate amig. 6 the thickness is approximately increased by the ratio
Epsilam-10 superstrate are used. It is important to note tht(Epsilamn ,)/(PTFEn,,) which is \/10.2/2.43 ~ 2 and
an inversion in the behavior of th&e {z(c)} occurs, (it the actual electrical thickness, //;d, is about 0.2 and 0.4,
tends to negative values instead of positivexas increased) respectively.
and this is due to the fact that the superstrate dielectricThe effects of the superstrate thickneg /) on the
constants are higher than those of the substrate. This pteflection coefficient are investigated in Fig. 7 for a case with
nomenon has major effects on the conditions required fan Epsilam substrate and PTFE superstrate. The thin layers
the establishment of a transverse resonance in microstgproximation accounts for the superstrate anisotropy ratio
antennas. Moreover, even though the variation of the sonly for the phase of thewg(l') = Re{z(w)} as shown
perstrate anisotropy ratiny2/n,,2) is quite smaller than in Fig. 7(a), but fails to account for it when its magnitude
that of the previous case (Fig.5), the deviation betwe¢hi| = exp[—Im {x(«)}] is concerned [Fig. 7(b)]. Also, as
thin layers approximation and numerical integration is quithown in Fig. 7(a) and (b), the thin layers approximation fails
larger. From a closer examination one can see that the sameccount for the superstrate thickness for botf) (I') and



628 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

s#++++ Numer tcal Integretton _ P"zi1'aa £2=2.35
-0.30 se+»+Thin layers epprox. k.,d <1 ] ngg,gg g:";%gg
- **e*+eno cov.|laygr
- i
80
]
-0.40 ] , F1
—~ 4 i
= e 1 A / !
z 304 'P,p = W + \1‘
E-o.ts 5 1T I L\
] i
~ ol 4 '\ ‘| \\ VN l\ e
] Y ! !
-9.50 ] 4 b Lo \
e NG e e e e ol [ S SR
4 1 e oA
£ bop=dh J3em .35%@@ _’?\ l\f."ﬁ’ .“‘ L
=0.55Juuiis £r6,2.25 ] XL ,““ !
seses £ e ] .- I
——— gasE,=1/2.25 b F
70 2 .
B e o o o o O SR B o i o o e e - LA LR S L L S
2.00 0.02 0.04 2.26 .08 2125 21175 1’2(2[3}—5{) 2275
requency iz
Normalized superstrate thickness, d,/A
@)
@
9 seesn 5,=13.0] &,=10.2
1 —+++8&,=18.2] £,=10.2
2.85 q e 5=6.0 | gy=10.2
E +++++ Numer tcal Integretton 80: /\
4 s+~ Thin leyers epprox. k.d <1 ] %
B.047 seves £ E=4 1
] awras £ /52,20 B
] seess £/ Ep=] . ] g 2
] e B/ E0=1,2.28 g 1 P \{‘1 1; P, \
B 7 b Lo !
_.0-e3] . 32 I T
) 3 - ] i Iy
= 3 ) ] \ ! i
(7 3 4 1 TR
E 3 71 Y i ! |
~ .02 ] T ‘
] -20+ l o o
] Jaem .35:}&“@ M \Ppa.nr # ‘{““A
] ] Ts———-»\ o+, ’«‘ \ £
7 ] X&,d.ff 4 *
.91 2 [N
] ] i
] ] 2cm
] —7@rrr;x|x|21 élvxlxxrlrlxlx:lrr
] 2125 17 2225 2275
e.egel@Yll|Vll@lbél!llllbl]@;lf‘lllg]@gmlIl)@!]@a frequency f (MHz)
Normalized superstrate thickness, d,/A (b)
(b) Fig. 8. Effects of the dielectric anisotropy on a rectangular patch antenna

printed on Epsilam-10 with PTFE cover layer, when the anisotropy ratio of
Fig. 7. Effects of the superstrate thickness on the reflection coeffiCient

> ( | (a) superstrate and (b) substrate is varied.
whena = n,,; sin 9 = 0.5 with the superstrate anisotropy ratio as a

parameter. (aRe {x(«)} and (b)Im {z(x)}.
Further examination of Fig. 7(b) shows that a steep increase

. in Im{xz(«)} corresponding to a steep decrease is
[T’|. Moreover, both R@:(q)} and Im{a:(c_x)} are, in general, obser\;{eé f)o]}EJ_Q/E//E — 4 gnd superstthe thicknea@})\o
gecreased :h‘e?ﬂé‘ t'sf[ mcregsed. This Co;respondst. to %reater than about 0.04. This must be due to a strong coupling
'ec[?ass E rg( )f ut o an ”?Cfe"fe OITCL' ¢ n E?(Chedp |c))\n of energy-to—surface-wave modes. A similar behavior was
in this behavior ofRe{z(a)} is observed for highds/A  qpcaned without the cover layer, [7], when the substrate
and highe 1, as shown in Fig. 7(a) foe12/e//2 = 4. This iy ness was increased over abdut), > 0.04 and for high
seems to be due to the excitation of the first LSM mo

) _, i 11- Also, the effects of increasing the superstrate thickness
The first LSM turn-on condition for the single-cover laye

. ) 'ZdQ/A) on the reflection coefficient are much lower (by a
is 2my/e12 —1dy/Ao < 7/2 and for the double layer is factor of about 10) than the effects of increasing the substrate

2my/err — 1(di/do + d2/Xo) < m/2 sinceery > e1y. FOr  hickness without the cover layer [7]. The same conclusion is
the data assumed in Fig. 7(a).( = 13, €12 = 9.4, Ao = 10 tyye when a cover layer is present.

cm) there is not any single-cover layer LSM excitation since The input impedance for the dominant mode (M of

the LSM®) is excited ford,/Ao > 0.09, but it is possible a rectangular patch antenna printed on Epsilam-10 with a
for the double-layer LSI\W) to be excited fordy /Ao > 0.06. PTFE cover layer is shown in Fig. 8. The substrate anisotropic
This actually occurred for the curve »/e;;» = 4 and dielectric constant is kept constant in Fig. 8(a) while the

da/Xo > 0.065. cover layer anisotropy rati¢e 12/¢,/2) is varied through its
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practically occurring values. The resonant frequency as well g8] R. Mittra and S. W. LeeAnalytical Techniques in the Theory of Guided

the resonant impedance are drastically lowered when the cover ‘é"a‘lgesku’\éi‘t"ér\(oék T’\"aj’é‘;]iﬂﬁnlaﬁ%% C. Chang, “The thin substrate

!a)_’er is present, while a further de_:cr_ease is Ol?se_rved asithe ~ approximation for reflection from the end of a slab-loaded parallel-plate
is increased from 1.88 to 2.82. Similar behavior is observed in wave waveguide with application to microstrip patch antennd=EE

Fig. 8(b) where a fixed uniaxial superstrate is assumed and the Trans. Antennas Propagatol. AP-30, pp. 910-917, Sept. 1982.
¥ Peixeiro and A. M. Barbosa, “Leaky and surface waves in anisotropic

substrate anisotropy ratige;;/¢,,1) is varied. Namely, the printed antenna structuresiEEE Trans. Antennas Propagatl. 40,
resonant frequency and the resonant impedance are lowered pp. 566-569, May 1992.

o : ] J. R. Mosig, “Numerical techniques for microwave and millimeter wave
aseii s increased. In both cases, major effects are observeu, passive structures,” imtegral Equation Techniqueg,. Itoh, Ed. New

thus the presence of the cover layer as well as the two layers york: wiley, 1989, ch. 3.

anisotropy should be taken into account during the desig?] '&AA}LCB’\R Windows, version 4.2b© The Mathworks, Inc., South
. . f adick, .
Otherwise, the antenna may pe operating completely outsidg p c. Chang and E. F. Kuester, “Total and partial reflection from the end
the frequency band for which it was intended. of a parallel-plate waveguide with an extended dielectric sl&atio
Sci.,vol. 16, no. 1, pp. 1-13, 1981.
[14] G. Kyriacou and J. N. Sahalos, “An easy to use method to define
XI. CONCLUSION the input impedance of a probe-fed rectangular microstrip antenna,” in
. . . . . . Archiv. fur Elektrotech. 70. Berlin, Germany: Springer-Verlag, 1987,
A Wiener—Hopf-type technique in conjunction with a space- . 349-357. y: =pring g
domain Fourier transform was employed to solve the canonidab] D. C. Chang, “Analytical theory of an unloaded rectangular microstrip

problem of TEM wave obliquely incident upon the edge Eggclhv"'EEE Trans. Antennas Propagaupl. AP-29, pp. 54-62, Jan.
of a semi-infinite plate conductor lying at the interface ofie] R. E. Collins, Field Theory of Guided WavesPiscataway, NJ: IEEE
two uniaxial dielectrics, which form an otherwise grounded Press, 1991.

double-layer geometry. The single cover layer and double-

layer LSE and LSM modes characteristic equations, along

with their cutoff conditions, and the techniques to solve the
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