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A Wiener–Hopf-Type Analysis of Uniaxial
Substrate–Superstrate Microstrip Structures

George A. Kyriacou,Member, IEEE,and John N. Sahalos,Senior Member, IEEE

Abstract—A Wiener–Hopf-type technique in conjunction with
the hybrid-mode analysis and a space-domain Fourier transform
pair was employed for the solution of the canonical problem of
a TEM wave obliquely incident upon the edge and defined by a
semi-infinite plate conductor lying at the interface of two uniaxial
dielectrics, forming an otherwise grounded double-layer geome-
try. The single-cover layer and double-layer surface-wave modes’
characteristic equations are examined and their cutoff conditions,
along with safe conditions avoiding longitudinal-section magnetic
(LSM) modes are given. The scattered field components and the
TEM-wave reflection coefficient are given analytically in the form
of Sommerfeld-type integrals. A thin layers approximation and a
numerical integration scheme were adopted for the evaluation of
the reflection coefficient. Its expression can be directly used for
the analysis of wide microstrip lines and patch antennas printed
in a substrate/superstrate geometry. The whole analysis gives a
clear physical insight into the problem. Furthermore, a twofold
theoretical verification was adopted by either forcing the absence
of the superstrate or considering both layers to be isotropic.
Numerical parametric investigations show the effects of either the
presence of the superstrate or both layers’ dielectric anisotropy.

I. INTRODUCTION

A DIELECTRIC superstrate (cover) layer is often found
necessary to be included in the analysis of microstrip

antennas structures. The cover layer is either intentionally
used (acting as a radome) for protection from environmental
hazards, or sometimes naturally formed (e.g., ice layer) due to
weather conditions. It was proven in [1]–[3] that a significant
increase in patch antenna gain, radiation resistance, and its
efficiency can be obtained by properly choosing the superstrate
parameters. For this purpose to be achieved, fairly thick
layers of the order of a quarter wavelength have been
considered. Moreover, it was proven that optimum efficiency
could be achieved by a reduction, or even an elimination of
surface waves. On the other hand, it is stated in [4] that when
considering relatively thin layers, an increase in the superstrate
layer thickness results in an efficiency reduction. It is also
pointed out that the presence of the superstrate increases the
edge conductance and, thus, the radiated power along with
the surface-wave power are also increased. Thus, from [4] it
can be concluded that unless the thickness of the two layers
is taken for the resonance condition specified in [1]–[3], the
superstrate should not be too thick.

Manuscript received June 3, 1996; revised January 24, 1997.
G. A. Kyriacou is with the Department of Electrical and Computer

Engineering, Demokritos University of Thrace, GR-67100 Xanthi, Greece.
J. N. Sahalos is with the Department of Physics, Aristotle University of

Thessaloniki, GR-54006 Thessaloniki, Greece.
Publisher Item Identifier S 0018-9480(97)02912-8.

Both layers in the above-mentioned investigations are as-
sumed to be isotropic. A lot of dielectric materials exhibit
a dielectric anisotropy, especially of the uniaxial type. This
is either an inherent property of the material as in uniaxial
crystalline substrates (e.g., sapphire, quartz, and magnesium
fluoride) or an artificially acquired property during the man-
ufacturing process (e.g., ceramic impregnated Teflon, like
Epsilam-10). In addition, the inclusion of an also uniaxial
superstrate offers more degrees of freedom in the printed
circuits and antenna design toward the improvement of their
performance. For this purpose, an extensive investigation of
the substrate/superstrate anisotropy effects should be carried
out. It is exactly toward this aim that the authors are currently
working, with some preliminary results presented in [5], while
an in-depth examination is to be presented in this paper.

The single-layer (substrate) uniaxial anisotropy has been the
subject of the authors’ previous works [6], [7]. A double-
layer structure, where an uniaxial superstrate is added is
analyzed in this paper. An analytic approach based on the
Wiener–Hopf technique in conjunction with a space-domain
Fourier spectrum is employed. This results in closed-form
expressions in terms of Sommerfeld-type integrals for the
scattered electromagnetic-field components, which gives a
clearer physical insight compared to numerical techniques.
First, the canonical problem of a TEM wave obliquely incident
upon the infinitely extended edge, defined by a truncated
plane conductor lying at the interface of the two uniaxial
dielectric slabs is addressed. The whole scattering phenom-
enon near the edge, namely radiated fields, surface waves
excitation, and reflected fields, is taken into account and
a TEM-wave reflection coefficient is established.
For the case of electrically thin layers, an approximation of
the integrals involved in is carried out, resulting in
an algebraic closed-form expression for . While for
electrically thick layers, a numerical integration scheme is
employed for the evaluation of the integrals involved in

.
Furthermore, the established can be used for the

study of wide microstrip lines as well as rectangular and some
triangular patch antennas. According to [9], [13], [15], the
scattering-reflection phenomenon can be reasonably assumed
to be localized for the wide microstrip lines and the most
frequently encountered patch antennas in practice. Namely,
their open edges can be assumed electrically isolated. Thus, the
two-dimensional (2-D) reflection coefficient established herein
can be used within the geometrical optics technique, e.g., [14],
[15], for the study of these practical structures.
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Fig. 1. An obliquely incident TEM wave at the edge of a semi-infinite plate conductor, in a uniaxial anisotropic substrate/superstrate configuration.

II. FORMULATION

An infinitely extended grounded double-layer dielectric
structure is considered, where a semi-infinite plate conductor
is located at their interface, as shown in Fig. 1. The relative
magnetic permeabilities of the two slabs are symbolized as

( ), while their dielectric permittivities are assumed
uniaxially anisotropic with their optical axis vertically aligned
along the -axis, described by tensors of the form

for (1a)

The optical axis is a term widely used for the uniaxial
media. Further details can be found in [16]. The corresponding
refractive indices are then

and

(1b)

A Wiener–Hopf solution of the canonical problem of a verti-
cally polarized TEM propagating in layer one and obliquely
incident (at an angle ) upon the opening defined by the

truncated conductor, is to be tried first. A TEM-wave reflection
coefficient will then be defined, followed by parametric inves-
tigations for the edge admittance and its applications in the
study of microstrip structures. The incident wave, propagating
in region one, can be expressed as

and

(2)

where and

are the propagation constants in the- and -direction, respec-
tively, and is the free-space intrinsic impedance.

The scattered field components are determined by the help
of a space-domain Fourier transform in conjunction with the
hybrid-modeanalysis technique. Time harmonic fields of the
form and a -space spectrum Fourier transform pair in
the -direction are considered as

and

(3)
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and , defined as positive and negative functions,
are analytic in the upper- and lower-complex-planes, respec-
tively. Since there is not any discontinuity in the-direction,
the scattered field will also be propagating along the-axis
as , like the incident field. (The dependencies
and apply for all the field quantities, but they are
omitted for convenience throughout this paper.) In this manner,
Maxwell’s equations can be simplified with the resulting
substitutions: , , and

.
Furthermore, according to the hybrid-mode analysis, the

scattered field can be given by a superposition of longitudinal-
section electric (LSE) modes or transverse to the-axis
TE with and the corresponding magnetic modes
longitudinal-section magnetic (LSM) or TMwith as

and

(4)

The subscript denotes the three regions ( for the air
and within the two dielectric slabs). The field-
components defined as and
satisfy the following wave equations:

and

(5)

where

and

The solutions of wave equations (5) for the air region are

for (6)

where and the real part of all -functions
must be positive Re , Re , Re .

The corresponding solutions in the two dielectric slab re-
gions are

(7)

Region one is and region two is .

The total tangential electric field must be continuous at the
interfaces , , and . Since the incident tangential
electric field is zero then the continuity must be satisfied by
the scattered one. Using (4), the latter requirement imposes the
continuity of the quantities and .
These conditions yield the following.

1) On the infinite ground plane (zero tangential electric
field) at :

(8)

2) On the interface (incident field ):

(9a)

(9b)

3) On the interface :

(10a)

(10b)

Also, the tangential magnetic field must be continuous on
the air–dielectric interface. Thus, (4) imposes the continuity
of and , which at gives

(11a)

(11b)

A Wiener–Hopf equation for the scattered-component
electric field can be found by applying the boundary conditions
for the total electric flux density vector at the
interface . The normal scattered flux is continuous
at the interface between dielectrics1 and 2 (for )
and discontinuous on the truncated conductor (for ) by
the amount of the induced surface charge density . The
authors follow the procedure given in [1] and recall that the
quantity for can be treated
as a fictitious surface-charge density . This is the charge
density that would be induced at the interface ( , )
if the plate conductor was not truncated. This results from an
equivalent situation where the incident field is assumed to be
confined within the first layer; namely the incident field, is
assumed to be zero above the dielectric–air interface .
Under this approach, and in order for the boundary condition
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of the normal flux to be valid, a fictitious charge density
must be included at ( , ) as

or

Taking into account the boundary conditions for the scattered
component at ( , ) and for both and the
incident component at ( , ) one finally gets

(12)

where and are the Fourier transforms of
and , and are analytic in the lower and upper complex-
half planes.

The Fourier integral of the known incident electric field
( , ) can be evaluated analytically yielding the

in the form

(13)

The total charge induced on the truncated conductor can also
be expressed by the divergence of the total tangential flux
density . For this purpose, the authors define a function

analytic in the lower complex- half plane as

(14)

The unknowns , , and can be expressed as a
function of through (9a), (10a), (11a), and (14). The
resulting expressions are as follows:

where

Substituting these into (12), and after some algebraic manipu-
lations, one gets the following Wiener–Hopf equation:

(15)

as shown in (16a) and (16b) at the bottom of the page.
The characteristic equations of the excited LSE modes are
introduced in (15) and (16) as will be explained in the
following section.

In the same manner as above, a Wiener–Hopf equation
for the magnetic field can be found by imposing the bound-
ary conditions for the total magnetic field on the truncated
conductor and at the interface of the two dielectrics. The
tangential magnetic field must be continuous at the interface

between the two dielectrics (for ), while it
must be discontinuous by the amount of the total induced
surface current density on the truncated conductor (for

). This boundary condition in its usual form can be
written as . In order to reduce this
vector form into a scalar one, one can take its divergence
as , where the operator

is reduced to since only the tangential components are
involved. For convenience, let . In this manner
this boundary condition gives the following relation in the
Fourier domain:

(17)

where and are the Fourier transforms of the quantities
and , which is

and

(18)

It can easily be proved from (2) that for the incident magnetic
field . This means that the surface current density
involved in (17) is exclusively coming from the scattered
magnetic field, thus or .

In order to establish another relation between the unknowns
, , and , beside that of (17), a function

analytic in the lower- half plane is defined from the rotation
of the tangential electric field on the truncated conductor as

(19)

where

(16a)

and

(16b)
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Fig. 2. Single- (upper) and double-layer surface waves propagating in thex > 0 and x < 0 directions, respectively.

The unknowns , , and can be expressed in terms
of through (9b), (10b), and (11b) as

where

Substituting the above relations in (17) and using the expres-
sions (7), after a relatively long algebraic manipulation, one
gets the following Wiener–Hopf equation:

(20)

where

(21a)

and

(21b)

As is expected, the excited LSM modes characteristic equa-
tions are introduced in (20) and (21).

III. LSE, LSM SURFACE MODES

CHARACTERISTIC EQUATIONS

Two groups of surface waves are supported by the structure
of Fig. 1, which are clearly shown in Fig. 2. The first group is
supported by the “grounded” (over the truncated conductor)
superstrate layer in the area . The second group is
supported by the grounded double layer (over the infinite

conductor) in the area . Both of these surface waves
are excited by the TEM incident wave at the edge . The
first group propagates in the cover layer toward , while
the second group propagates in both layers toward .

The characteristic equations for the modes of the upper
grounded layer can be found by considering the truncated
conductor at to be extended infinitely ( ).
For such a situation the tangential electric field must vanish
on the infinite conductor. This yields

or

and

or explicitly

(22)

Equation (22), along with the boundary conditions at the
interface given by (10) and (11), leads to the following
two characteristic equations:

Grounded upper layer LSE modes:

or

(23)

Grounded upper layer LSM modes:
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(24)

where and ( ) are the propagation constants
of LSE and LSM modes, respectively, and is the
order of the mode.

The characteristic equations for the grounded double layer
can be obtained by considering the absence of the truncated
conductor at . In such a case there is not any surface
current flowing along the interface and the tangential
magnetic field must be continuous across it. This gives

or

and

or explicitly

(25)

The rest of the boundary conditions (except for the truncated
conductor) are valid exactly as in the previous section. So, the
combination of expressions (8)–(11) with (25) results in the
following characteristic equations:

Grounded double layer, LSE modes:

(26)

with , given by (16b).

Grounded double layer, LSM modes:

(27)

with given by (21b).
Inspecting the two Wiener–Hopf equations [(15) and (20)],

one can see that the double-layer surface waves characteristic
equations are introduced inside them as denominators: LSE
modes in the electric field and LSM modes in the magnetic
field. The cover-layer surface-waves characteristic (23) and
(24), are in turn, introduced inside and , respec-
tively.

IV. SOLUTION OF THE WIENER–HOPF EQUATIONS

The two kernels and involved in the Wiener–Hopf
equations are first factored into a product of a positive and
negative function: and ,
according to [8]. Similarly following [7] and [13], one finally
obtains the following solutions:

(28)

and

(29)

where (see (30) at the bottom of the page), and

(31)

(30)
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Since all the -functions (unknown at the beginning) in-
volved in the expressions of the electromagnetic field are
already given in terms of either or , then
(28)–(31) can be used to obtain the desired field components.
The difficulty to be faced now is that the obtained expressions
are in the Fourier domain and an inverse Fourier transform
is required in order to get the field components in the real
domain. This task presents major difficulties in the general
case, since the functions and , and in turn
the field spectral components, are already in the form of
Sommerfeld-type integrals, as shown above.

Fortunately, there is a number of cases with practical
interest, like the reflection or the transmission coefficient
of the TEM wave where the inverse Fourier integral can
be approximated by its residue (or Cauchy principal value)
contribution.

At this point, as well as at the end of some major steps
within the present analysis, a twofold theoretical verification
is adopted. First, by considering the absence of the superstrate
(zero thickness and unit dielectric constant) all expressions
are exactly reduced to those of the authors’ previous work [5],
[7], and are carried out by considering a uniaxial substrate, as
well as one without a superstrate. Second, by letting the two
dielectric layers become isotropic (namely
and ), and considering normal incidence
( ) as in [4], the corresponding expressions appearing
therein are exactly verified.

V. REFLECTION COEFFICIENT

All surface waves mentioned earlier are excited near the
edge , in the vicinity of the point where the-polarized
TEM wave is incident. In general, these two infinite series of
LSE and LSM modes must be taken into account by means of
their residue contributions at the poles (propagation constants)

, given by the solution of (23), (24), (26), and
(27). Higher order modes have large attenuation constants and
vanish quickly from the edge. At an adequate distance away
from the edge, only the dominant reflected-polarized TEM
wave will exist and its contribution is given by the residue
at . This is the case for wide microstrip

lines and antennas. It is quite convenient for these applications
to account for the reflected TEM wave by the aid of the
corresponding reflection coefficient. This is defined as the ratio
of the reflected-to-incident TEM wave-component of the
electric field. The scattered-component of the electric field
within the substrate can be obtained by applying the
inverse Fourier transform to given by (7a) where the
function is taken by its expression with . It is
then

Since the interest here is in the reflected wave, which
exists in the area, the contour of integration is closed

in the lower- half plane. The TEM-wave scattered field is
obtained from the residue contribution of the corresponding
pole at [for which ]. The resulting

reflection coefficient is then expressed as

(32)

where

(33)

The functions and are given as semi-infinite
integrals with respect to or . For the purpose of this
paper, either numerical integration or analytical approximation
will be employed depending on the two layers thickness. An
examination of (30) shows that the main contribution to the

integral comes from the pole .

It is then more convenient for numerical integration purposes
to extract this contribution analytically. But, as
in the usual case (small dielectric losses), this pole lies near
the Re axis and the integration is from 0 to , thus this
contribution is actually a Cauchy principal value. The resulting
principal-value integral is

(34)

where for convenience the integration variable is changed from
to .
Furthermore, a theoretical verification is again adopted;

namely, the absence of the superstrate again leads to the exact
expressions obtained in [6], [7].

VI. THIN DIELECTRIC LAYERS APPROXIMATION

Special computer programs are needed in order to calculate
the reflection coefficient from the above Sommerfeld-type
integrals. Simple, fast, and accurate (for practical applications)
expressions are required to be included in microwave inte-
grated circuit (MIC) computer-aided design (CAD) packages.
Such an approximation is very usual in practice, and can be
obtained considering both dielectric slabs to be electrically thin

and . The authors expand all the above
integrands in powers of and integrating term by term up
to [terms not included]. Following a similar



KYRIACOU AND SAHALOS: WIENER–HOPF-TYPE ANALYSIS 623

procedure with that of [9], closed-form expressions for the two
functions and are obtained as

(35)

(36)

where

the Euler’s constant

and

An important thing to be noted is that the cover layer
thickness ) is absent from the above expressions. This
is because it appears in the expansions only in and above the
second-order terms or , which are, in
turn, omitted. This fact means that the reflection coefficient
is relatively insensitive from the thickness while it is strongly
dependent on the dielectric characteristics of the cover layer,
provided of course that the cover layer is electrically thin.
In order to account for the cover layer thickness effects, a
numerical evaluation of the integrals involved in is
necessary.

VII. SURFACE WAVES APPROXIMATE

WAVENUMBERS AND TURN-ON CONDITIONS

The LSE and LSM mode wavenumbers appear as pole
singularities in the field or integrals. Their exact lo-
cation is necessary in order to evaluate these integrals since
these poles lie on or near the integration path. An iterative
Newton–Raphson scheme is employed for the solution of the

corresponding transcendental characteristic (23), (24), (26),
(27). A good starting value is needed in this scheme to accel-
erate convergence but also, and more important, to distinguish
the desired solution from the multiple possible solutions. It
should be noted at this point that not all of these modes are to
be excited, but only those allowed by the two-layer thickness.
Thus, the first task is to define the modes which are turned on.

For the single grounded layer, namely the surface modes
propagating in the cover layer (for ), the turn-on
conditions or cutoff frequencies, as well as the approximate
wavenumbers, are given in the authors’ previous work [7]. It is
worth recalling that the first LSE mode is always excited, while
the second mode is the first LSM which is turned on when

. Also, the approximate wavenumbers
refer to the electrically thin cover layer and its characteristics
can be deduced from the corresponding expressions given in
[7].

In order to get some practical limits, the cutoff conditions
of the grounded double-layer surface waves will be defined.
All the field components including the surface waves are
proportional to in the air region, as shown in (6),

where . Recalling the radiation condition,

Re , the valid wavenumbers should have .
Thus, the surface waves cutoff condition is or
while the turn-on, or excitation, condition is . Letting

in (26) and (27), the double-layer cutoff conditions
for the LSE and LSM modes are obtained in a form similar
to that of [10] as shown in the following.

Double layer LSE cutoff condition:

(37)

Double layer LSM cutoff condition:

(38)

It is interesting to note that the left-hand side (LHS) of (37)
and (38) involves only the superstrate parameters, while the
right-hand side (RHS) involves only the substrate parameters.
Forcing the absence of the superstrate, e.g., let , then
(37) and (38) reduce to the corresponding cutoff conditions
of a single-substrate layer. Similarly, inverting first (38) and
forcing the absence of the first layer, e.g., let , then the
single layer-superstrate cutoff conditions are obtained from
(37) and (38).

An important observation is that the first solution of (37)
is , thus the first double-layer LSE mode has zero
cutoff frequency ( ) which means that the LSEis
always excited. But, this is not the case for the LSM modes
which will be turned on only if the two-layer electrical
thickness is adequately high. For a given geometry a graphical
representation of (37) and (38) gives the best insight. For this
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purpose, and for each one in (37) and (38) separately, the
authors can plot one curve versus frequency (versus

) for the LHS and another one for the RHS. The cutoff
frequencies for each one of the surface-waves modes is defined
at the points where the two curves intercept each other.

In most practical applications it is desirable to avoid surface-
waves radiation as far as possible. It is thus recommended to
select the two-layer thickness to avoid the excitation of the first
LSM mode and to retain only the unavoidable LSE. For the
single-cover layer, this is quite easy because the authors just
selected so that . From this, one can
see that LSM is more likely to be turned on as or are
increased. Based on this observation one can conclude a safe
condition for the double-layer geometry by accounting for a
worst case equivalent single layer with thickness
and index of refraction leading to

Double layer safe condition (non existence of LSM-modes):

(39)

The condition (39) is similar to that given in [11, p. 160] for
the isotropic double-layer case.

As soon as one defines the surface waves which are turned
on, their exact wavenumber values are needed for the nu-
merical integration, as explained earlier. Practical situations
requires only the two first modes LSEand LSM . Approx-
imating both layers to be electrically thin, the corresponding
double-layer wavenumbers (denoted with a superscript) are

(40)

(41)

Equation (40) exactly reduces to that of [11, p. 161] for
the isotropic case, while assuming just the absence of the
cover layer ( ) (40) and (41) reduce to those of the
authors’ previous work [7]. Also, for the single-cover layer
the corresponding approximate values and result
from (40) and (41) by replacing the summation with the term
of . Finally, these values are improved employing an
iterative Newton–Raphson scheme to solve the characteristic
equations.

VIII. N UMERICAL INTEGRATION-SINGULARITIES

The thin dielectric layers approximation for the reflection
coefficient is very fast, but its accuracy is poor and it does not
account for the superstrate thickness, even though it remains
very useful, especially for the study of microstrip antenna
problems where it can be iteratively used in the solution of

the corresponding transverse resonance equations. In order to
accurately estimate microstrip lines or antenna characteristics
the quantities obtained by the thin layers approximation must
be improved employing a numerical integration scheme for the
reflection coefficient. The same requirement applies also for
the investigation of the substrate/superstrate thickness effects.

The semi-infinite integrals involved in the evaluation of the
reflection coefficient and in (31) and

(34) possess a number of singularities and branch cuts. In order
to avoid the branch cuts the integration path is taken along the

axis (from 0 to ). The excited LSE surface waves

presents poles in the at , while
both LSE and any excited LSM modes present poles in the

integral, the latter at . It
is the usual practice to select the dielectric layers thickness
so that no LSM modes are excited. The pole at

has already been taken into account as a Cauchy

principal value. Also, the integral possesses a pair of
simple poles at .

Furthermore, the integral possess a number of logarithmic
singularities (branch points) for or at
and for or at . The latter singularity

appears also in integral.
Additionally, there are some removable singularities which

must be carefully accounted for in order to avoid numerical
problems. In both integrals the term is
replaced by in the limit when . Also, in
two terms of the form for appear
within , which are replaced by in the limit when

.
Depending on the value of the propagation constant

(or the angle of incidence) some of these singu-
larities may be located on the integration path axis,
or they may be moved away on the axis where they
do not affect the numerical integration. As explained in the
authors’ previous work [7] one can distinguish three cases
and for each of them the integration path is properly modified.
The definition of each case is as follows:

1) is the total reflection case;

2) when there is only surface waves
excitation;

3) when there are both surface waves and sky
wave radiation (the edge radiates, thus it works as an
antenna).

For the integrals’ numerical evaluation the integration path
is subdivided into proper unequal small sections, when the
singularities are first located on the axis. The inte-
gration is performed up to a point close to the singularity
and then resumes just after it. The relatively slowly varying
logarithmic singularities are approached up to

while the faster varying pole singularities up
to . Also, the subintervals are selected to
become gradually smaller as a singularity is approached.
Furthermore, more subintervals are taken up to the point

, . When these intervals are
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(a)

(b)

Fig. 3. Graphical solution of the double-layer cutoff conditions for a PTFE substrate and Epsilam-10 superstrate. (a) LSE-modes, (37). (b) LSM modes, (38).

established and are put in an increasing order an adaptive
Romberg integration with an error tolerance 10is performed
in each of them. For the remaining semi-infinite interval, a
progressive Romberg integration, on subintervals with length

is performed until the last contribution becomes
less than 10 .

IX. A RECTANGULAR MICROSTRIP

ANTENNA WITH A COVER LAYER

In the authors’ previous work [14] closed-form expressions
for the field under the radiating patch, the resonant frequency
or the resonant length, and the input impedance of a probe fed
rectangular patch antenna has been given. These expressions
can be modified for the present case, essentially using the
above-given reflection coefficient. The two transverse resonant

conditions are

with (42)

where and are the dimensions of the patch, respectively.
The resonant frequency can be calculated from (42) follow-

ing the procedure described in [6]. The resonant length of the
antenna can be found by solving the first of (42) to establish
a transverse resonance for a fixed widthand fixed frequency

. The resulting propagation constant is used in the second
of (42) and the resonant length considering the excitation
of a TM mode is

(43)
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Similarly, the microstrip antenna input impedance can be
obtained by substituting the above developed reflection co-
efficient into the expressions given in [6], [14].

X. NUMERICAL RESULTS AND DISCUSSIONS

The first concern is the examination of the surface waves
turn-on conditions and their wavenumbers. A MATLAB pro-
gram was written for the graphical presentation of the double-
layer cutoff conditions (37), (38) versus frequency. An ex-
ample is shown in Fig. 3, for which the same data used in
[10] are adopted for comparison purposes, where a Teflon
(PTFE) substrate with , ,
mm, and Epsilam-10 superstrate with , ,

mm are assumed. The two curves shown in Fig. 3(a)
correspond to the LHS and RHS of (37) and their intercept
points define the LSE cutoff frequencies approximated as

, GHz, and GHz. Similarly,
Fig. 3(b) corresponds to (38) and the LSM cutoff frequencies
are GHz, GHz. These results are
almost identical to those in [10] where the corresponding
equations were solved numerically. The authors’ graphical
presentation offers a simple and clear insight into the entire
situation.

Having estimated the cutoff frequencies it is then clear
which surface modes are excited. The authors will deal with
the usual case when only the first LSE modes are excited.
The dependence of the substrate and superstrate thickness
on the wavenumbers and for both the single
(cover) and double grounded layer are of special interest.
A Newton–Raphson iterative scheme is employed for the
solution of (23) and (26). The authors start from the ap-
proximate values of the wavenumbers given in (40). It must
be kept in mind that their exact value is required in the
numerical integration, thus an error tolerance of the order
of 10 is demanded. A parametric investigation for both

and versus the superstrate thickness with
the horizontal dielectric constant of the cover layer as
a parameter, is shown in Fig. 4. It can be concluded that is
always while both of them are increased when
is increased.

Epsilam-10 is considered for the substrate and PTFE for
the superstrate in Fig. 4(a), while these are assumed vice
versa in Fig. 4(b). Higher values are obtained in Fig. 4(b),
because the superstrate has high dielectric constant (Epsilam-
10) and its thickness is increased while it is considered thin
in Fig. 4(a). It is first observed that the anisotropy effects
become significant only for electrically thick substrates in
terms of rather than . Recall that the condition
for surface-wave excitation only, without sky wave radiation,
is . Also, note that [and

] may become quite higher than unity [even ] for
thick layers, as in the case of Fig. 4(b) for example. It is then
concluded that thick layers (either sub- or superstrate) with
high dielectric constant may lead to excessive surface-wave
coupling and even without sky-wave radiation. This situation
must be avoided, especially in microstrip antennas, where sky
wave is the useful radiation while surface waves only give

(a)

(b)

Fig. 4. Propagation constant of the first single and double-layer LSE mode.
Actually, [�(s)

pe1 � 1] and [�(d)
pe1 � 1] versus the normalized superstrate

thickness (d2=�) with "?2 as a varied parameter. (a) Substrate is Epsilam-10
and superstrate is PTFE and (b) vice versa.

rise to power losses. Thus, such a structure will act as a
questionable antenna.

The incident TEM-wave reflection coefficient (), for a
practical case of electrically thin substrate (Epsilam-10) and
thin superstrate (PTFE), versus the angle of incidence(or
the propagation constant ) with the superstrate
anisotropy ratio ( ) as a parameter,
is shown in Fig. 5. The agreement between the thin layers
approximation and the numerical integration is quite good
for the phase of given by with an error less
than about 8%, but the agreement is rather poor for the
magnitude of given by with an error
up to about 25%. Also, the thin layers approximation does
not account for the superstrate anisotropy in the .
Moreover, the behavior of in this case, namely when
the substrate dielectric constants are higher than those of
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(a)

(b)

Fig. 5. Influence of the superstrate dielectric anisotropy on the reflection
coefficient and comparison of the thin layers approximation with the numerical
integration. (a) Phase of the reflection coefficientarg (�) = Re fx(�)g. (b)
Magnitude of the reflection coefficientj�j = exp [�Im fx(�)g].

the superstrate, is quite similar to that without a superstrate
examined in the authors’ previous work [7]. A similar in-
vestigation is shown in Fig. 6 where PTFE substrate and
Epsilam-10 superstrate are used. It is important to note that
an inversion in the behavior of the occurs, (it
tends to negative values instead of positive asis increased)
and this is due to the fact that the superstrate dielectric
constants are higher than those of the substrate. This phe-
nomenon has major effects on the conditions required for
the establishment of a transverse resonance in microstrip
antennas. Moreover, even though the variation of the su-
perstrate anisotropy ratio is quite smaller than
that of the previous case (Fig. 5), the deviation between
thin layers approximation and numerical integration is quite
larger. From a closer examination one can see that the same

(a)

(b)

Fig. 6. Effects of the superstrate dielectric anisotropy on the reflection
coefficient when the superstrate (Epsilam-10) has higher dielectric constant
than the substrate (PTFE). (a)Re fx(�)g and (b)Im fx(�)g.

superstrate physical thickness is used in the two cases (Figs. 5
and 6) but the actual electrical thickness is proportional to
the effective index of refraction. So, one can say that in
Fig. 6 the thickness is approximately increased by the ratio
of (Epsilam )/(PTFE ) which is and
the actual electrical thickness is about 0.2 and 0.4,
respectively.

The effects of the superstrate thickness on the
reflection coefficient are investigated in Fig. 7 for a case with
an Epsilam substrate and PTFE superstrate. The thin layers
approximation accounts for the superstrate anisotropy ratio
only for the phase of the as shown
in Fig. 7(a), but fails to account for it when its magnitude

is concerned [Fig. 7(b)]. Also, as
shown in Fig. 7(a) and (b), the thin layers approximation fails
to account for the superstrate thickness for both and
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(a)

(b)

Fig. 7. Effects of the superstrate thickness on the reflection coefficient�(�)

when � = n==1 sin ' = 0:5 with the superstrate anisotropy ratio as a
parameter. (a)Re fx(�)g and (b) Im fx(�)g.

. Moreover, both Re and Im are, in general,
decreased when is increased. This corresponds to a
decrease of but to an increase of . An exception
in this behavior of is observed for high
and high as shown in Fig. 7(a) for . This
seems to be due to the excitation of the first LSM mode.
The first LSM turn-on condition for the single-cover layer
is and for the double layer is

since . For
the data assumed in Fig. 7(a) ( , ,
cm) there is not any single-cover layer LSM excitation since
the LSM is excited for , but it is possible
for the double-layer LSM to be excited for .
This actually occurred for the curve and

.

(a)

(b)

Fig. 8. Effects of the dielectric anisotropy on a rectangular patch antenna
printed on Epsilam-10 with PTFE cover layer, when the anisotropy ratio of
(a) superstrate and (b) substrate is varied.

Further examination of Fig. 7(b) shows that a steep increase
in Im corresponding to a steep decrease in is
observed for and superstrate thickness
greater than about 0.04. This must be due to a strong coupling
of energy-to–surface-wave modes. A similar behavior was
observed without the cover layer, [7], when the substrate
thickness was increased over about and for high

. Also, the effects of increasing the superstrate thickness
on the reflection coefficient are much lower (by a

factor of about 10) than the effects of increasing the substrate
thickness without the cover layer [7]. The same conclusion is
true when a cover layer is present.

The input impedance for the dominant mode (TM) of
a rectangular patch antenna printed on Epsilam-10 with a
PTFE cover layer is shown in Fig. 8. The substrate anisotropic
dielectric constant is kept constant in Fig. 8(a) while the
cover layer anisotropy ratio is varied through its
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practically occurring values. The resonant frequency as well as
the resonant impedance are drastically lowered when the cover
layer is present, while a further decrease is observed as the
is increased from 1.88 to 2.82. Similar behavior is observed in
Fig. 8(b) where a fixed uniaxial superstrate is assumed and the
substrate anisotropy ratio is varied. Namely, the
resonant frequency and the resonant impedance are lowered
as is increased. In both cases, major effects are observed,
thus the presence of the cover layer as well as the two layers
anisotropy should be taken into account during the design.
Otherwise, the antenna may be operating completely outside
the frequency band for which it was intended.

XI. CONCLUSION

A Wiener–Hopf-type technique in conjunction with a space-
domain Fourier transform was employed to solve the canonical
problem of TEM wave obliquely incident upon the edge
of a semi-infinite plate conductor lying at the interface of
two uniaxial dielectrics, which form an otherwise grounded
double-layer geometry. The single cover layer and double-
layer LSE and LSM modes characteristic equations, along
with their cutoff conditions, and the techniques to solve them,
were given. An electrically thin layer approximation and semi-
infinite integration was carried out for the Sommerfeld-type
integrals involved within the reflection-coefficient expressions.
A twofold theoretical verification was adopted for all the
analytical expressions obtained by forcing the absence of
the superstrate or considering both layers to be isotropic
and verifying the expressions of [7] and [4], respectively.
Numerical investigations have shown that the presence of
the superstrate, as well as both layers’ dielectric anisotropy,
cause significant effects on the characteristics of microstrip
lines or patch antennas printed in such a geometry. It is also
concluded that numerical integration should be employed in
the case of thick layers, but the thin layers approximation
is of primary importance in the solution of patch-antennas
transverse–resonance equations. The present analysis can also
be used for the examination of quite interesting possibilities
like substrate–superstrate resonant thickness first proposed in
[1]–[3] by further extending the numerical integration scheme.
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